Final Project:

Reed Solomon Encoding

Kenny Kwan (402-623-132)

David Lee (602-722-923)

EE 113L

Instructor: Dr. Ingrid Verbauwhede

TA: Steven Chow

Date: 12/4/2000

Introduction:

Our goal is to perform Reed Solomon (RS) data encoding using a Texas Instruments TMS320C54x DSP chip. RS codes are essential to error control codes in digital communication systems. An RS code provides a method of correcting errors produced during the transmission of data by adding special parity bits. RS codes are very popular with space communications. A signal travelling over a long distance can accumulate a lot of noise. Space communication could not be possible without some sort of data correction scheme. NASA's Voyager and Galileo space probes are a few famous RS applications in space. RS codes are also found in many consumer applications such as CD, DVD, and HDTV.

System Description:

For this project we plan on creating a very basic Reed Solomon encoder. All we require for this project is the DSP itself. Our encoder does not sample inputs. The A/D and D/A converters will not be necessary, and thus will not be utilized. Our RS encoder reads pre-coded input data from the system’s memory. The encoded parity bits will then be calculated and stored into a block of memory. No data transmission out of the DSP will be done. Our primary goal is just to perform Reed Solomon encoding of data bits.

Here are the RS code parameters we will be using:

Length of code block

= 15

Length of data block

= 9

Length of parity block

= 6

Maximum number of error that can be corrected
= 3

Galois Field

= 24 = 16

Summarizing the parameters above: our RS encoder will read a set of 9 integers and will produce a set of 6 parity bits for error correction. The data for transmission will be 15 integers long (9 + 6 = 15). The integers that represent data can only exist in the Galois Field of 16: meaning only integers 0 – 15 are valid. Any other integers will undergo a modulus 15 calculation. With this setup, up to 3 errors can be corrected by the decoder.

Project Development:

Completely understanding the mechanics of Reed Solomon Coding and developing DSP code for it was rather difficult to in a short amount of time. To speed up development time we obtained a working C model to use as a reference.

After compiling the C model we noticed that the C model generated many static tables upon execution. We felt that real-time generation of static tables will be a waste of DSP processing time. Hard coding the static tables in the form of look up tables would be a better solution for a DSP. Specifically the Galois field, index references, and generator polynomial coefficients were hard coded.

The rest of the ASM coding was fairly straightforward: mirroring the C reference code.

The only other trouble point was calculating the modulus of a number. The TI ASM language of the C54x does not have a built in modulus operand. Getting around this problem was simply a matter of writing our own MOD operand function.

A simple output data comparison between our DSP and the reference C encoder verified our RS encoder was in working order.

Performance:

Reed Solomon encoders are primarily used in situations where data retransmission is not an option. Hence, they are classified in a group of error correcting codes (ECC) known as forward error correcting codes (FEC). In addition, they are used in situations where speed is an issue.

For example, resending a corrupted voice ‘packet’ in a cell phone conversation will not do any good because it will no longer fit into the context of the conversation. Correction needs to be done ‘on the fly’ as the packets are received. Another example is in the decoding of moving pictures. Again, it makes no sense to resend a frame of a streaming live broadcast because that frame will no longer fit into the context of the live broadcast.

For these reasons, RS encoders/decoders should be fast because encoding and decoding needs to be completed before the arrival of the next packet in real time environments like cell phone transmissions and live broadcasts. A small amount of buffering can be done, but the delay should be minimal.

When coding our RS encoder, therefore, we were aiming for fast computations. As a result, our code performs admirably. We did rough guesstimate of the computation time required by the Intel processor and the DSP chip.

By manually going over the code and examining the worst-case scenario, we came up with an estimated value of 234+111+144 = 489 assembly instructions.

Mainloop=9 loops x 26 instructions = 234

InnerLoop=6 loops x 37 instructions = 111

Calculate first parity bit = 6 loops X 24 instructions = 144

Upon decomposing the C code with a C (assembly program called Black Ice, we again manually recounted the maximum number of instructions possible and came up with a value of 427 instructions. In other words, the assembly we wrote and the assembly used by our Intel processor is quite similar.

Therefore, we claim that encoding is faster on a DSP chip rather than on a CPU with similar clock speeds because the ‘54x can perform multiple read/writes in a single cycle and because it is optimized for math and DSP operations such as real time input and output.

This is one reason why RS encoders should be performed on DSPs rather than on CPUs. Another reason is because DSPs are cheaper and better suited for real time input-output scenarios. These findings usually are true for any type of ASIC to CPU comparison based on price and speed.
Code Size:
Our program, although quite complicated to implement in ASM code, occupies only 67 data memory words that were used to store the Galois fields, index values, and counters. In addition, when a packet of data arrives we can encode and then reuse memory locations for the next packet as well. Considering that the ‘54x has 2k of on-chip ROM and 10k of on-chip DARAM, our encoder is using only 20/12k *100 = 0.17 percent of the memory which leaves a significant amount for other uses. In addition, our actual program size does not come near the 64K of addressable program memory space. Given more time, the code can definitely be optimized as well.

Conclusion:

In summary, the results of the RS encoder output correspond to the C encoder that was available on the web. It was quite a challenge to implement the function in assembly and then upload it into the TI ‘54x chip, but after much fine-tuning and debugging our encoder is a success. The encoding was accurate as the multiple tests runs proved. Just as important, our RS encoder satisfies two main criteria: a small memory footprint and fast encoding. I was a very fun, challenging, and satisfying project to work on and we wish we had more time to research and continue work on RS decoding, but nevertheless we gave it our best and we are quite proud of the results.

References:

Books

Reed-Solomon codes and their applications / edited by Stephen B. Wicker, Vijay K. Bhargava. Piscataway, NJ : IEEE Press, c1994.

Error-correction coding for digital communications / George C. Clark, Jr. and J. Bibb Cain. New York : Plenum Press, c1981.

C Reference Code

Our reference base code for the TI C54x ASM encoder was based off of an Reed Solomon C encoder/decoder created by Simon Rockliff. The full source code for Rockliff’s C encoder/decoder can be found on our project web site at http://reedsolomon.tripod.com.
