Reed Solomon codes are a subset of BCH codes and are linear block codes. A Reed-Solomon code is specified as RS(n,k) with s-bit symbols.

This means that the encoder takes k data symbols of s bits each and adds parity symbols to make an n symbol codeword. There are n-k parity symbols of s bits each. A Reed-Solomon decoder can correct up to t symbols that contain errors in a codeword, where 2t = n-k.

The following diagram shows a typical Reed-Solomon codeword (this is known as a Systematic code because the data is left unchanged and the parity symbols are appended):

Example: A popular Reed-Solomon code is RS(255,223) with 8-bit symbols. Each codeword contains 255 code word bytes, of which 223 bytes are data and 32 bytes are parity. For this code:

n = 255, k = 223, s = 8

2t = 32, t = 16

The decoder can correct any 16-symbol errors in the code word: i.e. errors up to 16 bytes anywhere in the codeword can be automatically corrected.

Given a symbol size s, the maximum codeword length (n) for a Reed-Solomon code is n = 2s – 1
For example, the maximum length of a code with 8-bit symbols (s=8) is 255 bytes.

Generator Polynomial
A Reed-Solomon codeword is generated using a special polynomial. All valid code words are exactly divisible by the generator polynomial. The general form of the generator polynomial is:

[image: image1.png]g(x) = (x- &)z - &™)...(x - &™)

and the codeword is constructed using:
c(x) = g(x).i(x)

where g(x) is the generator polynomial, i(x) is the information block, c(x) is a valid codeword and is referred to as a primitive element of the field.

Example: Generator for RS(255,249)

[image: image2.png]8 = (- a’)x-ar - @) x- @) - aYx- @)

B)=at+gt gt +e’ v gt v gy

Code for Encoding (by Simon Rockcliff)

register int i,j ;

int feedback ;

 for (i=0;i<nn-kk;i++) bb[i] = 0;

 for (i=kk-1; i>=0; i--)

 { feedback = index_of[data[i]^bb[nn-kk-1]] ;

 if (feedback != -1)

 { for (j=nn-kk-1; j>0; j--)

 if (gg[j] != -1)

 bb[j] = bb[j-1]^alpha_to[(gg[j]+feedback)%nn] ;

 else

 bb[j] = bb[j-1] ;

 bb[0] = alpha_to[(gg[0]+feedback)%nn] ;

 }

 else

 { for (j=nn-kk-1; j>0; j--)

 bb[j] = bb[j-1] ;

 bb[0] = 0 ;

 } ;

 } ;

 } ;

EE 113L, Fall 2000

David Lee and Kenny Kwan

Source Information Courtesy of http://www.4i2i.com/reed_solomon_codes.htm

